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Abstract: The pH titration curve is a well-known figure in chemistry. It is easy to plot this graph from 
experimental data by measuring pH as a function volume of added titrant; however, there is no simple 
mathematical equation for expressing pH as a function of titrant volume. The logistic function has been 
suggested but, as discussed in this paper, it is inadequate for modeling titration curves. Developed in this paper is 
a piecewise continuous function (with chemically meaningful parameters) of pH versus volume. A program has 
been written to display this function on a graphing calculator. This program can be used by students (1) to 
analyze the characteristics of pH titration curves, for example, the derivative and the presence of two inflection 
points, and (2) to interactively fit experimental titration data that they have collected. 

One of the more interesting graphs that occur in chemistry is 
the pH titration curve shown in Figure 1. This graph shows 
how pH changes with volume during a titration. In a titration, a 
chemist is reacting an acid (or base) of unknown concentration 
with a base (or an acid) of known concentration. At the 
equivalence point, the number of H+ ions from the acid is 
�equivalent� to the number of OH− ions from the base. This 
equivalence allows the chemist to determine the concentration 
of the unknown acid or base. The equivalence point can be 
recognized easily on the graph as the region where the pH 
changes most rapidly. Mathematically, the equivalence point is 
an inflection point on the curve. 

Using the Texas Instruments (TI) Calculator-Based 
Laboratory (CBL) System with a pH probe and TI graphing 
calculator, it is quite easy to collect pH versus volume data 
experimentally during a titration. It would be convenient to 
have a general equation that could be used to model this data. 
One advantage of a function describing the pH curve is that 
the experimenter could use the many mathematical features, 
such as the derivative and trace, of graphing calculators to 
analyze the titration curve. The logistic function, which 
produces an S-shaped curve much like a titration curve, can be 
determined through regression analysis on a graphing 
calculator. This function has been used to fit titration data, but 
as discussed in this paper, it is not a very good model for an 
acid�base titration . 

The mathematical analysis of titration curves has been 
described in many articles and books. One of the most 
comprehensive of these is the article by Robert de Levie [1] 
that gives general expressions for many types of titration 
curves. A recent article by de Levie [2] describes a general 
simulator for acid�base titrations and P. Glaister [3] has 
published a unified titration formula for acid�base titrations. 
These unified equations are based on calculating progress 
curves, VB (volume of added base) as a function of H+ 
concentration (or pH), as distinguished from titration curves, 
pH as a function of VB. Glaister [4] has shown how the 
progress-curve equation can be inverted to determine the H+ 
concentration as a function of VB. One difficulty of Glaister�s 
approach is that it requires the solution of a cubic equation. 

Kent Crippen, Robert Mann, and David Brooks [5] describe 
the use of graphing calculators to model titration curves using 
a calculator program, titrate.83g, that they have written for the 
TI-83 calculator. This program solves for VB as a function of 
pH (the progress-curve approach) and stores the ordered pairs 
in lists on the calculator. The titration curve is then produced 
by doing a connect-the-points plot with pH on the y axis and 
VB on the x axis. 

This paper presents a new calculator titration program that 
produces a general titration function (pH as a function of VB) 
that does model correctly the titration of strong and weak acids 
by a strong base and does not require finding roots of cubic 
polynomials (except at the equivalence point). This function 
can be easily programmed on a graphing calculator and used to 
analyze the properties of pH curves and to determine the 
unknown concentration of an acid using the tools built in on 
the TI-83 and TI-86 calculators. The programs (titrafcn.86p for 
the TI-86 and titrafcn.83p for the TI-83) are available for 
download [6]. As a final point, we will discuss the 
characteristics of the logistic function and show in what ways 
this function is inadequate for modeling titration curves. 

pH Titration Curves 

In this paper we will consider two types of titrations: (1) a 
strong acid titrated with a strong base and (2) a weak acid 
titrated with a strong base. We will assume the strong base is 
NaOH and that the acids are monoprotic. Let CA be the 
concentration of the acid, CB be the concentration of the base, 
VA be the initial volume of the acid, KA be the acid ionization 
constant 
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and KW be the water ionization constant. 
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Figure 1. Graph of a titration curve for a weak acid with a strong base 
on a TI-86 graphing calculator. The arrow points to the equivalence 
point. 

 
Figure 2. pH versus VB for a strong acid titrated with a strong base. 

 
Figure 3. pH versus VB for a weak acid titrated with a strong base. 

In this paper we have simplified the equations for 
equilibrium constants by using concentrations instead of 
activities. During a titration, one gradually adds the base to the 
acid solution and measures the changes in pH of the solution. 
The volume of base added, VB, is the independent variable and 
pH is the dependent variable. The symbol pH is the negative 
base-10 logarithm of the H+ concentration, that is  

 pH = − log10 [H+] 

The results for the titration of a strong acid and the weak 
acid (KA = 1 × 10�5) with CA = 0.100 M, VA = 100 mL, and 
CB = 0.100 M are shown in Figures 2 and 3. 

A pH Titration Function 

We will begin the derivation of a pH titration function with 
the charge balance equation. 

 [Na+] + [H+] = [A−] + [OH−] (1) 

Next we will rewrite the concentrations of Na+, A−, and OH− 
in terms of CA, CB, VA, KA, and KW using the material balance 
and the ionization equilibrium relationships. The Na+ 
concentration is determined from the relationship that the 
moles of Na+ are always equal to the moles of added base 
(CBVB). 

 [Na+] = CBVB/(VA + VB) (2) 

During the titration, the moles of HA and A− will be equal 
to the initial moles of acid (CAVA). 

 CAVA = ([HA] + [A−])(VA + VB) (3) 

The concentration of HA can be replaced by [H+][A−]/KA. 

 CAVA = ([H+][A−]/KA + [A−])(VA + VB) (4) 

Solving eq 4 for the A− concentration yields the following 
equation. 

 [A−] = [CAVA/(VA + VB)][KA/(KA + [H+])] (5) 

And finally we can use the KW relationship to solve for [OH−]. 

 [OH−] = KW/[H+] (6) 

Inserting the results of eqs 2, 5, and 6 into eq 1 yields eq 7. 

CBVB/(VA + VB) + [H+] =  
 [CAVA/(VA + VB)][KA/(KA + [H+])] + KW/[H+] (7) 

Multiplying both sides of this equation by (VA + VB)(KA + 
[H+])[H+] gives a cubic equation in [H+]. 

[H+]3 + [H+]2[KA + CBVB/(VA + VB)] +  
 [H+]{KA[(CBVB � CAVA)/(VA + VB)] � KW} � KAKW = 0 (8) 

Solving this cubic equation for [H+] gives the H+ concentration 
(and therefore the pH) as a function of the volume of added 
base, VB. The equivalence point occurs when CBVB = CAVA. 
The pH at the equivalence point can be determined by solving 
a reduced form of eq 8. 

[H+]3 + [H+]2[KA + CACB/(CA + CB)] � [H+]KW � KAKW = 0 (9) 

The TI-83 and 86 calculators have the capability of solving 
these cubic equations numerically. Unfortunately, this process 
is somewhat time consuming. Fortunately though, eq 8 can be 
approximated. The first step is to divide eq 8 through by [H+]. 

[H+]2 + [H+][KA + CBVB/(VA + VB)] +  
 KA[(CBVB � CAVA)/(VA + VB)] � KW(1 + KA/[H+]) = 0 (10) 

In the initial (acid) region of the titration, where [H+] > 10−7, 
the last term KW(1 + KA/[H+]) will be small and can be 
neglected. With this approximation we get a quadratic 
equation that can be solved analytically. 

 2
3 3 A 1 2[ ]  0.5*[     4 /  ]H Y Y K Y Y+ = − + +  (11) 

 Y1 = (CAVA � CBVB)           Y2 = (VA + VB) 

 Y3 = KA + CBVB/(VA + VB) 
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Figure 4. Fit of pH function (solid line) to the titration data points 
(boxes) for a strong acid titration.  

 
Figure 5. Fit of pH function (solid line) to the titration data points 
(boxes) for a weak acid titration. 

 
Figure 6. Plot of pH function and first derivative for a weakacid 
titration. 

 
Figure 7. First derivative of the pH titration function. The arrow marks 
the halfway point (the buffer region). 

Table 1. pH of an Acetic Acid Solution after 10.0 mL Increments of 
0.100 M Sodium Hydroxide are added 

VB/mL pH 
0.00 2.82 

10.0 4.02 
20.0 4.41 
30.0 4.69 
40.0 4.96 
50.0 5.28 
60.0 5.84 
70.0 11.62 
80.0 12.06  

 
Figure 8. Plot of pH versus volume of base added for an unknown 
weak acid. 

 
The approximation cannot be used at the equivalence point 

or in the region beyond the equivalence point where [H+] < 
10−7; however, in this basic region of the titration, there is 
another approximation that can be used. If we follow the same 
steps as given before to derive eq 8 from eq 1 but this time 
solve for the [OH−] instead of [H+], we get the following 
equation for the OH− concentration. 

[OH−]2 + [OH−][KB � (CBVB � CAVA)/(VA + VB)] �  
 KBCBVB/(VA + VB) � KW(1 + KB/[OH−]) = 0 (12) 

Notice the similarity to eq 10. Note that KB = KW/KA. For 
neutral and basic pH values, the last term is small and we can 
again write an analytical solution to the quadratic equation. 
This time we are solving for the [OH−] to determine the pH of 
the solution. 

2
5 5 B B B A B[OH ]  0.5     4 /(   )  Y Y K C V V V−  = − + + +  

 (13) 

 Y5 = KB � (CBVB � CAVA)/(VA + VB) 

The complete pH function is determined by three equations, 
eqs 9, 11, and 13, which are combined to form a single, 
piecewise equation on the TI graphing calculators (Y7 in the 
program titrafcn.83p on a TI-83 and y7 in titrafcn.86p on a TI-
86). Notice in Figures 4 and 5 the excellent fit of this equation 

(the line) to the data points (the boxes) for both the strong acid 
and weak acid titrations.  

Figure 6 shows a plot of the first derivative (using 
nDer(y7,x,x) on the TI-86). As we would expect, the 
maximum of the first derivative (the small peak near the VOL 
label) occurs at the equivalence point. If we change the 
window, more details of the first derivative of the pH curve 
can be seen as shown in Figure 7. Notice the point halfway to 
the equivalence point. At the halfway point the concentrations 
of the acid, HA, and its conjugate base, A−, are equal. The 
derivative reaches a minimum at this point. This region, where 
there is the smallest change of pH with volume of base added, 
is known as the buffer region of the titration curve. Buffers are 
solutions that resist changes in pH, that is, they have small 
changes of pH with volume of base (or acid) added. Buffers in 
our blood maintain the pH level of the blood between 7.35 and 
7.45. Note that the halfway point is also an inflection point on 
the pH curve. 

One of the ways that the titrafcn program can be used in the 
classroom is to interactively fit experimental titration data. 
Consider the following experiment. A student is given 50.0 
mL of an acetic acid solution of unknown concentration. They 
titrate this solution with 0.100 M sodium hydroxide, 
measuring the pH every 10.0 mL using a CBL and a pH probe. 
The data is given in Table 1 and a plot of this data is shown in 
Figure 8. 

Figure 9 gives the first eight screen shots of the titrafcn.86p 
program with a guess of 0.100 M for the unknown 
concentration of the acetic acid. As we can see from the poor 
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 Figure 9. Screen shots showing the input of data into program titrafcn.86p on a TI-86 calculator. 

 
Figure 10. A plot of the pH function using 
a guess of 0.100 M for the concentration of 
the unknown acid. 

 
Figure 11. Calculator screen shots showing the second guess of 0.120 M for the concentration of 
the unknown acid. 

 
Figure 12. pH titration function with a guess of 0.130 M 
unknown acid concentration. 

 
Figure 13. pH titration function with a guess of 0.140 M 
unknown acid concentration. 

 
 

 
Figure 14. Fit of pH function with (a) KA = 1.0  × 10�5, (b) KA = 1.75 × 10�5, and (c) KA = 2.5 × 10�5. Notice particularly the goodness of the fit in 
the buffer region. 

fit of the data to the equation in Figure 10, the guess of 0.100 
M for the unknown concentration is not correct. The graph 
indicates that the concentration must be larger because the 
equivalence point occurs at a higher volume of base (further to 
the right on the VOL axis). Change the concentration guess by 
choosing option 1 and entering a higher concentration, for 
example, 0.120 M. This is shown in Figure 11. 

We are close to the correct concentration. The results for 
guesses of 0.130 M and 0.140 M are given in Figures 12 and 
13. Clearly, 0.130 M gives the best fit (and is the right answer) 
to the titration data. One advantage of using this pH-function 
program is that the experimenter does not need to collect lots 
of data points, for example, near the equivalence point, to 
successfully determine the unknown concentration. 

Another question we might ask is how sensitive is the pH 
curve to changes in KA, the acid ionization constant. In Figure 
14 we can see (particularly in the buffer region) the sensitivity 
of the titration curve to a KA, which is too small or too large by 
as little as 0.75 × 10�5. In Figure 14a, KA = 1.0 × 10�5 and the 
pH curve is a little too high and in Figure 14c, KA = 2.5 × 10�5 
and the pH curve is a little below the data points in the buffer 
region.  

The Logistic Function 

On the TI-86 (and TI-83) graphing calculator one of the 
built-in regression equations is for a logistic function,  
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Figure 15. A plot of the logistic function. 

 
Figure 16. A TI-86 screen shot showing the results of the logistics 
regression of the strong acid titration data. The parameters are a = 
9.09636, b= 9.30333 × 10240, c = 5.55028, and d = 2.20962. 

 
Figure 17. Plot of the strong acid titration data points (boxes) and the 
logistic regression function (line). 

 
Figure 18. A TI-86 screen shot showing the results of the logistics 
regression of the strong acid titration data. The parameters are a = 
7.23889, b = 4.89521 × 1030, c = 0.70998, and d = 4.63091. 

 
Figure 19. Plot of the weak acid titration data points (boxes) and 
logistic regression function (line). 
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(for the TI-83 the logistic function has only three parameters, d 
is set equal to zero). As can be seen in Figure 15 the logistic 
curve has an S-shape like the titration curve. It has been 
suggested that this function could be used to model titration 
data. 

Historically, the logistic function is given in the following 
form 

 ( ) ( )1 x
y x

e κα
α

β −
=

+
 

It is a general solution of the differential equation 

 ( )dy y y
dx

κ α= −  

where κ and α are positive constants. This differential equation 
is attributed to a Belgium mathematician Pierre Verhulst who 
named it the logistic equation [7]. He proposed this equation 
to model population growth over time for a population, P, 
whose growth rate diminishes as (P∞ � P), that is,  

 ( )dP k P P P
dt ∞= −  

(for a population growing exponentially, dP/dt = kP) where k 
is a growth rate constant. With the parameters, α = 12, β = 
8103, and κ = 0.01, the logistic curve is S-shaped (or sigmoid) 
and looks similar (see Figure 15) to the pH curve we saw 
earlier. The point of inflection for the logistic curve occurs at x 
= (ln β)/κα = 75 and y = α/2 = 6. The slope dy/dx at the point 
of inflection is κ(α/2)2 = 0.36. The logistic curve has only one 
inflection point and it is symmetric about that point (unlike the 
pH titration curve). 

In biology, the logistic function has been used to 
successfully model experimental population data. It is also a 
good model for the spread of an infectious disease through a 
population. In chemistry, the change in concentration with 
time for certain autocatalytic reactions has been found to be 
logistic. Let us now look at how well it models titration curves. 

We will use the logistic regression (LgstR L1,L2,y1 on 
the TI-86) to fit the strong acid titration data points. This 
calculation takes about 6 min on the TI-86.  The results are 
shown on Figure 16. The logistic regression for this strong 
acid titration does not converge on the TI-83 (the value of b 
exceeds the limit of 9.999... × 1099). Figure 17 gives a plot of 
the logistic regression equation with the data points shown as 
boxes. The fit is acceptable in the equivalence point region, 
but it is not very good in the other regions of the graph. Let us 
use the calculated values of the logistic parameters to 
determine the x and y values of the inflection point for the 
logistic function. These should correspond to the volume of 
base and the pH at the equivalence point. 

 x (= VB, eq) = −ln (b)/c = 99.968 mL 

 y (= pHeq) = (a/2) + d = 6.758 

These are close to the correct values of 100.0 mL and pHeq = 
7.00 for the strong acid titration. 

Figures 18 and 19 give the results for the logistic fit of the 
weak acid titration. This calculation takes about 10 min on the 
TI-86. (The results on the TI-83 are a = 7.2401, b = 4.657 × 
1030, c = −0.7095 after subtracting 4.63 from the pH values.) 
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The overall fit is less successful for the weak acid; however, as 
with the strong acid, the fit in the equivalence region is not too 
bad. The calculated value of VB, eq = −ln (b)/c = 99.5 mL is 
close to the correct value of 100.0 mL, and the value of pHeq = 
(a/2) + d = 8.25 is below the correct value of 8.85. 

Conclusions 

The pH titration function presented in this article provides a 
general functional form for representing the change of pH 
during the titration of strong or weak acids. Students can use 
this function to analyze pH curves and to determine the 
unknown concentration of a strong or weak acid. Students can 
examine how changes in volume, concentration, and 
equilibrium constants affect the titration curve. Two 
advantages of this function in comparison to other 
approximate functions, for example, the logistic function, is 
that (1) it provides an excellent fit to experimental data with a 
minimum of effort and (2) the parameters of this function are 
chemically relevant. One disadvantage of this function is that it 
is a piecewise function and somewhat complicated. This 
difficulty can be overcome by using the titrafcn program, 
which automatically enters the function into the equation 
editor on the graphing calculator. 

Supporting Material 

Both programs (titrafcn.86p for the TI-86 and titrafcn.83p 
for the TI-83) are available in compressed format (single ZIP 
file) for download at http://dx.doi.org/10.1007/s00897000426a 
or individualy at ftp://chem.udallas.edu/pub/. 
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